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Abstract

The phenomenon of spatial transient growth in swirling duct flow with application to aeroengine duct acoustics is

investigated. In a typical aeroengine a region of swirling flow exists between the rotor and the downstream stator. The

possibility for optimal transient growth of disturbance energy, and of a norm related to the acoustic power radiated back

upstream from the stator is shown. Significant transient growth of both energy and noise norms can be observed over

length scales relevant to aeroengine size, and over a wide range of parameter values such as the degree of mean swirl,

azimuthal wavenumber and frequency. The optimal disturbances are found to have significant three dimensionality. The

growth in energy results from increases in the azimuthal and radial components of the disturbance velocity field as it

propagates downstream, whilst increases in the azimuthal velocity bring about non-modal growth of the noise measure.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of aeroacoustic and fluid-dynamical instability and noise generation in aeroengines has
traditionally been studied by considering the behaviour of infinitesimal unsteady disturbances. Generally these
disturbances are assumed to be periodic, and are expressed as a modal decomposition so that the characteristic
behaviour can be determined from the solution of an eigenvalue problem. This solution essentially describes
the asymptotic, long-term or long-range, behaviour of the flow. In aeroengine intake ducts, where the mean
flow is generally axial and irrotational, the eigenvalue problem derived from the governing acoustic wave
equation leads to the identification of acoustic modes which describe the evolution of sound waves along the
duct. Important stability and noise generation problems also occur, or are associated with, the region of
swirling flow which occurs downstream of the rotor. The length of this swirl region is physically curtailed by
the presence of a stator located further downstream. In the case of swirling flow the fluid motion is governed
by acoustic and vorticity equations which are coupled by the presence of non-zero mean vorticity.

An important feature of swirling duct flow is that the underlying linear operator of the governing eigenvalue
problem is non-normal and the associated eigenfunctions are non-orthogonal. In the field of stability theory
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a0 mean sound speed
A matrix, Eq. (19)
B matrix, Eq. (27)
D matrix, after Eq. (17)
GE maximum energy norm, Eq. (17)
GN maximum noise norm, Eq. (25)
k1;2 Eq. (38)
K matrix, Eq. (12)
L matrix, Eq. (12)
m azimuthal order
M matrix, Eq. (14)
q perturbation vector (before Eq. (13)),
Q matrix, Eq. (23)
rh;t hub and tip radii
u0 velocity perturbation
u? blade normal velocity
U ;W axial, azimuthal mean flow speed

t time
X ;R;T amplitudes of components of rotational

unsteady velocity
x; r; y cylindrical polar coordinates
Z1;2 inner, outer wall impedances
g� Eq. (29)
j eigenvector, Eq. (20)
k after Eq. (37)
F potential for irrotational part of unstea-

dy flow
f amplitude of F
L convective wavenumber—following Eq.

(10)
r0 mean density
s hub-to-tip ratio
n mean vorticity
O solid-body swirl angular velocity
o frequency
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and transition there has been great interest in the phenomenon of non-modal (algebraic) growth, whereby
small disturbances may undergo significant transient growth before settling into the asymptotic state predicted
by the modal eigenvalue analysis. Mathematically non-modal growth occurs as a result of the non-normality
of the linearized operators describing the disturbance behaviour, and constructive and destructive interference
is possible before modal behaviour sets in. Apparently this phenomenon has not been addressed previously in
the context of duct acoustics.

A modal decomposition in swirling duct flow leads to the identification of two families of coupled acoustic-
vorticity modes. One set is pressure-dominated, analogous to acoustic modes in non-swirling (irrotational)
flow and maintained by compressibility effects. The other set is vorticity dominated and maintained by mean
vorticity effects. The propagation of sound and vorticity waves can be expressed in terms of a superposition of
these modes. Various aspects of swirling duct flow and the phenomena associated with it in aeroengine
applications have been studied by a number of investigators. For example Roger and Arbey [1], Golubev and
Atassi [2] and Tam and Auriault [3] considered the propagation of disturbances and identified the different
families of eigenmodes. The role of swirl in the generation of acoustic resonance within aeroengine ducts,
which may be relevant to the destabilization of the fan and the onset of flutter and rotating stall, has been
considered by Cooper and Peake [4] and Cooper et al. [5]. More recently the effect of swirl on the generation of
rotor–stator interaction noise has been investigated by Golubev and Atassi [6,7], Atassi et al. [8] and Cooper
and Peake [9,10].

Numerous investigations into viscous flow problems have shown significant non-modal growth, both in
temporal and spatial frameworks, even when all the eigenmodes are stable. Hultgren and Gustavsson [11]
considered the temporal evolution of a 3-D disturbance in a boundary layer and found periods of initial
algebraic growth followed by viscous decay. Other work using the temporal formulation to investigate the
transient amplification of disturbances has been carried out by Boberg and Brosa [12], Butler and Farrell [14],
Gustavsson [15], Reddy and Henningson [16], Schmid and Henningson [17] and Trefethen et al. [18], and all
showed the possibility of significant non-modal growth effects. Work in the spatial framework followed
[19–23]. Compressible flows studied in the temporal framework have been viscous compressible shear flow [24]
and compressible boundary-layer flow [25] which showed a large amount of transient growth (temporal) over
a wide range of parameter values. Tumin and Reshotko [23] considered transient growth effects in
compressible boundary-layer flow in the spatial framework. The mechanism of optimal stationary
disturbances in viscous rotating pipe flow and optimal temporal disturbances in a trailing vortex has been
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explored recently by Ben-Dov et al. [26]. As a result of all these investigations the phenomenon of transient,
non-modal, growth has been strongly associated with the so-called bypass transition and a possible
mechanism that triggers nonlinear effects.

Since the linear operator for swirling duct flow is non-normal the question is posed as to whether non-modal
effects may be significant in aeroengine acoustics applications. The effects of any non-modal growth would
not be interpreted as a route to transition as in the studies in stability theory described above. Rather, it needs
to be established whether any energy growth would have implications for rotor–stator interaction noise, or for
the sort of resonant phenomenon described in Cooper and Peake [4]. Another difference to the stability theory
studies lies with the fact that the region over which transient effects can occur is finite, so that if transient
effects are present the length scale over which they occur in mean swirling duct flow must be compatible with
the engine size to be physically relevant.

The purpose of this paper is therefore to investigate non-modal effects within a spatial framework, and to
consider the growth of disturbance energy and of a so-called ‘noise norm’, which is related to the generation of
rotor–stator interaction noise. A parametric study is undertaken to establish characteristic behaviour in terms
of the degree of swirl, azimuthal mode number and frequency.

The mathematical background to the problem is described in Section 2, which introduces the governing
equations and the inner products relevant to the optimal growth of disturbance energy and noise. Results are
presented in Section 3, followed by a summary and conclusions in Section 4.

2. Mathematical background

2.1. Governing equations

The region downstream of the rotor in a typical aeroengine is modelled as an axisymmetric duct with
circular cross-section described in terms of a cylindrical coordinate system ðx; r; yÞ where the x-axis points
downstream. Lengths are non-dimensionalized by the tip radius, so that the duct is defined by the hub-tip ratio
s ¼ rh=rt and the flow region is sprp1. Velocities are non-dimensionalized with respect to the stagnation
speed of sound a�0, and subsequently all quantities used are non-dimensional.

The duct is assumed to carry a steady, swirling mean flow velocity, UðrÞ, and a small-amplitude 3-D
unsteady perturbation velocity, u0ðx; r; y; tÞ. The steady mean flow takes the form

UðrÞ ¼ UðrÞex þW ðrÞey, (1)

so that the mean vorticity, n, is given by

n ¼
1

r

qðrW Þ

qr
ex �

qU

qr
ey. (2)

The unsteady perturbation velocity is decomposed into vortical and potential parts according to Goldstein [27]
so that the unsteady velocity and pressure are expressed as

u0 ¼ uþ =F; p0 ¼ �r0
DF
Dt

, (3)

where r0ðrÞ is the mean density and D=Dt � q=qtþU � = is the convective derivative.
The evolution of the unsteady disturbances is governed by the linearized Euler and continuity equations.

Under the assumption of uniform mean entropy these equations can be written in the form

Du

Dt
þ ðu � =ÞU ¼ �n� =F, (4)

D

Dt

1

a2
0

D

Dt
F�

1

r0
= � ðr0=ÞF ¼

1

r0
= � ðr0uÞ, (5)

where a0ðrÞ is the local speed of sound. As can be seen the Euler (vorticity) and continuity (potential) equations
are coupled by the presence of non-zero mean vorticity on the right-hand side of Eq. (4). In the absence of
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mean vorticity u is decoupled from F, and can be determined explicitly in terms of the unsteady vortical flow
at upstream infinity.

Assuming a disturbance of the form

ðF; uÞðx; r; y; tÞ ¼ ðF; u; v;wÞðx; r; y; tÞ ¼ ðf;X ;R;TÞðrÞ expðiot� imy� ikxÞ, (6)

where o is the frequency, m is the azimuthal wavenumber, k is the axial wavenumber and ðf;X ;R;TÞ denote
the amplitudes of the corresponding unsteady quantities, the governing Eqs. (4) and (5) become

iLX þ
qU

qr

qf
qr
þ R

� �
¼ 0, (7)

iLR�
2WT

r
þ ik

qU

qr
fþ

im

r

1

r

qðrW Þ

qr
f ¼ 0, (8)

iLT þ
1

r

qðrW Þ

qr

qf
qr
þ R

� �
¼ 0, (9)

q2f
qr2
þ

1

r
þ

q ln r0
qr

� �
qf
qr
þ

L2

a2
0

�
m2

r2
� k2

� �
fþ

qR

qr
þ

1

r
þ

q ln r0
qr

� �
R�

imT

r
� ikX ¼ 0, (10)

where L ¼ o� kU �mW=r. The case L ¼ 0 corresponds to a disturbance which is exactly convected with the
mean axial and swirling flows. The boundary conditions for a hard-walled duct require that the radial velocity
vanishes at the duct walls, so that

qf
qr
þ R ¼ 0 at r ¼ s; 1. (11)

Since the aim is to investigate spatial transient growth, the frequency and azimuthal wavenumber are fixed
and the equations can be cast in the form of a linear axial eigenvalue problem

Lw ¼ kKw, (12)

where w ¼ ðf; Z;R; iTÞ with Z ¼ kð1�U2=a2
0Þf. Eq. (12) is found by first eliminating X in Eq. (10) using

Eq. (7), and then forming Eqs. (8–10) into the matrix equation. When Eq. (12) has been solved, the quantity X

can be recovered from Eq. (7). The matrices L and K are given in the appendix. For aeroengine applications,
where the mean vorticity is non-zero, the linear operator L� kK is non-normal.

Since the governing equations are coupled acoustic-vorticity equations, solutions to the eigenvalue problem
are coupled acoustic-vorticity waves and it is now well-known in the literature that two distinct families of
eigenmodes are supported (see e.g. Refs. [2,3]). One set of eigenmodes propagates with phase speeds close to
the speed of sound and are analogous to sound waves in a uniform flow. The second set of eigenmodes is
nearly convected with the mean flow, is vorticity dominated and sustained by the mean vorticity. The first set
is often referred to as ‘pressure-dominated’ in the literature, but it should be noted that the second set, having
a phase speed which is not exactly convected, also possess a non-zero (but typically smaller) pressure
themselves. The second set of eigenmodes all propagate downstream. Details on how the eigenmodes are
determined numerically are given in the appendix. Typical eigenvalue spectra are shown in Fig. 1 for the case
of uniform axial flow (U ¼ 0:3) and rigid-body swirl (W ¼ 0:4r) when s ¼ 0:5, o ¼ 15 and m ¼ �16. The
vorticity-dominated modes consist of two branches which asymptotically approach a singular point
corresponding to pure convection (given by L ¼ 0). These modes will subsequently be referred to as left and
right rotational modes. The pressure-dominated modes generally consist of a finite number of propagating
modes (real eigenvalues) referred to as cut-on modes, and an infinite set of evanescent modes (complex
eigenvalues) referred to as cut-off modes. Cut-on modes which lie to the left/right of the cut-off modes
propagate upstream/downstream. Note that there are no cut-on modes in this example when m ¼ 16 and one
upstream and one downstream cut-on mode when m ¼ �16. This demonstrates a general trend with azimuthal
wavenumber, described in detail by Roger and Arbey [1], in that modes co-rotating with the swirl (m40) can
be cut-off by the mean swirl, but modes counter-rotating with the swirl (mo0) can be cut-on by mean swirl.
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Fig. 1. Spatial eigenvalue spectrum for U ¼ 0:3, W ¼ 0:4r, o ¼ 15, s ¼ 0:5. Grey circles: m ¼ 16, crosses: m ¼ �16.
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2.2. Energy norm and optimal energy growth

In order to describe non-modal effects and the optimal growth of disturbance energy it is necessary to
introduce an appropriate inner product and associated norm. Since the problem being considered is the spatial
evolution of disturbances in a compressible flow a similar approach to Hanifi et al. [25] is used to define the
inner product, which must involve both disturbance velocity and density. Given that q ¼ ðu0; v0;w0; r0ÞT then,
for disturbance vectors qj and qk, the scalar product based on energy density is

ðqj ; qkÞE ¼ 2p
Z 1

s
qHj Mqkrdr, (13)

where H denotes complex conjugate transpose and

M ¼ diagðr0;r0;r0; a
2
0=r0Þ. (14)

The associated energy norm is then

ðq; qÞE ¼ kqk
2
E . (15)

Note that in the state vector q the velocity components u0; v0;w0 are the components of the total perturbation
velocity given by uþ =F and the perturbation density is given by r0 ¼ p0=a2

0. It should be noted that the choice
of inner product determines both the qualitative and quantitative behaviour of the system; the energy norm
yields that kqk2E is the quadratic energy density of the disturbance (i.e. kinetic plus potential), but other norms
yield different measures of the disturbance amplitude. An energy equation for the flow could be written down,
as in Goldstein [13], but it should be noted that kqk2E is not a conserved quantity due to the presence of the
mean vortical flow.

The optimal transient growth is based on an eigenvalue expansion and is similar to the method first used by
Butler and Farrell [14]. The optimal spatial energy growth is determined as an initial-value problem using the
method developed for the temporal framework by Schmid and Henningson [17] and adapted by Reshotko and
Tumin [22] for the spatial framework. The state vector is expanded in terms of the first M downstream
eigenmodes, which either propagate or decay downstream, so that

qðx; r; y; tÞ ¼ eiot�imy
XM
j¼1

kj q̂jðrÞe
�ikjx, (16)

where q̂j is the jth eigenfunction corresponding to the jth eigenvalue kj, and kj are coefficients to be optimized
to give maximum energy growth. Since the downstream eigenvalue spectrum essentially consists of three
branches of eigenmodes (left and right branches of the rotational modes and the cut-on/cut-off downstream
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acoustic modes) the eigenmodes included in the expansion are chosen equally from each of these families. In
ordering the eigenmodes the left and right branches of the rotational modes are counted starting furthest from
the point of pure convection L ¼ 0. For the acoustic modes the cut-on modes are counted first followed by the
cut-off modes in order of increasing jkij. The M eigenmodes for the expansion then comprise the first N

eigenmodes of each type, so that M ¼ 3N.
The maximum energy growth at a specific downstream location is given by

GEðo;m;xÞ ¼ max
kqðxÞk2E
kqð0Þk2E

, (17)

where kqð0Þk2E is the energy at the initial location x ¼ 0, and the maximization is taken over all possible initial
conditions qð0Þ. Using the notation j ¼ ðk1; k2; . . . ;kMÞ

T and D for the matrix with expð�ikjxÞ on the
diagonal, the ratio of norms on the right-hand side of Eq. (17) can be rewritten in the form

kqðxÞk2E
kqð0Þk2E

¼
jHDHADj

jHAj
, (18)

where A is the matrix of inner products defined by

Ajk ¼ ðqj ; qkÞE . (19)

The maximum energy growth at a particular downstream location is then given by the largest eigenvalue of the
problem

A�1DHADj ¼ GEðxÞj, (20)

where GEðxÞ is the eigenvalue. The corresponding eigenvector j determines the expansion coefficients in
Eq. (16) for the energy to be maximized at that axial location.

Recall here that we are considering the rotor–stator flow to be an axisymmetric mean base state plus an
unsteady, non-axisymmetric perturbation. The rotor wakes themselves are therefore part of this perturbation.
Note that the optimal energy growth GE (and the optimal noise growth GN defined below) are maximized over
all possible initial conditions of disturbances launched from the trailing edges of the rotor. Traditionally, rotor
wakes have been modelled using families of profiles (perhaps Gaussians), with adjustable parameters to
account for wake width and depth varying along the blade span. It therefore follows that simple wake models,
such as the Gaussian profiles, and indeed more realistic and complicated turbulent wake flows that one might
obtain from an experiment or a large CFD calculation, are included within the space over which we optimize,
and therefore that the optimal growth results we report provide an upper bound on what will occur in reality.

2.3. Noise norm

The emphasis is now changed from the non-modal growth of disturbance energy to consider an alternative
measure of disturbance amplitude which may be more relevant to the noise levels generated when the
downstream-propagating disturbances interact with the stator. The aim is to establish whether transient
growth may have a significant impact on rotor–stator interaction noise.

One approach to this problem would involve considering a full linear system, in which the downstream
disturbance at x ¼ 0 is converted into an acoustic field upstream (or downstream) of the stator. However, in
order to complete the optimal disturbance analysis complete information about the interaction, including the
scattering of any given incoming mode into any given outgoing acoustic mode, would be needed. This could be
completed in principle, but would require an exceedingly intensive computation of interactions with the stator.
For present purposes a property of the incident disturbance alone is sought, which is closely related to the
noise. The behaviour of this property can then be taken as being indicative of the possible effects of transient
growth on noise generation.

Rotor–stator interaction noise results when the downstream unsteady field interacts with the stator blades.
Several noise generation mechanisms arise here, including for instance volume terms associated with unsteady
motion round the stator blades, but the dominant mechanism corresponds to the simple momentum-blocking
effect when the unsteady flow is prevented from passing through the rigid stator blades. The amount of
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momentum blocking depends crucially on the unsteady velocity normal to the blades, and for the typical high
frequencies in these problems it can be shown [28] that the noise generated is proportional to the disturbance
velocity normal to the stator blade at the blade leading edge. For an unloaded row of stator blades, assumed
to be of zero thickness, aligned with the upstream steady flow, the blades make an angle a, defined by
tan a ¼W ðrÞ=UðrÞ, to the axis. The component of the incident unsteady velocity field normal to the stator
blades is then given by

u? ¼ w0 cos a� u0 sin a. (21)

A norm which is more indicative of the acoustic power radiated than the energy norm can then be formed by
maximizing u? across the span of the duct. A scalar product appropriate for maximizing this is thus defined by

ðqj ; qkÞN ¼ 2p
Z 1

s
qHj Qqkrdr, (22)

where

Q ¼ diagð� sin a; 0; cos a; 0Þ, (23)

and what is termed the associated ‘noise norm’ is

ðq; qÞN ¼ kqk
2
N . (24)

The same eigenvalue expansion approach as used in the optimization of disturbance energy can be applied
to optimize the noise norm. The noise norm is extremized relative to the same initial constraints as the
disturbance energy by defining the maximum noise growth downstream as

GN ðo;m;xÞ ¼ max
kqðxÞk2N
kqð0Þk2E

. (25)

The maximum noise norm is then determined as the largest eigenvalue of the problem

A�1DHBDj ¼ GN ðxÞj, (26)

where A, D and j are as defined in the previous section and

Bjk ¼ ðqj ; qkÞN . (27)

3. Results

The theory for optimal disturbances presented above is formulated for a general mean velocity distribution
but there are some numerical difficulties in determining the rotational modes when L (defined after Eq. (10))
depends on the radius. Qualitative results can be obtained by approximating the mean velocity field by a
uniform axial flow and solid-body rotation. Results are thus presented for the mean flow U ¼ U0, W ¼ Or,
where U0 and O are constants. This approximation allows more accurate and efficient computation of the
eigenvalues and eigenvectors, which is crucial for optimal-growth considerations (we return to this point in the
conclusions). For all the computations N ¼ 30 eigenmodes of each type were included, which was found to be
sufficient to give convergent solutions.

3.1. Energy norm

The first case examined considers the effect of the different families of eigenmodes on the maximum energy
growth over the axial range 0pxp0:5, when s ¼ 0:5, U0 ¼ 0:3 and o ¼ 15. Fig. 2 shows the results for
m ¼ 16 and two different levels of mean swirl given by O ¼ 0:1 and 0.4 (both cases for which no cut-on modes
occur). With only rotational modes included there is no transient growth and when only acoustic modes are
included the energy decays with axial distance. In Fig. 2(c) the decay rate for O ¼ 0:4 is faster than that for
O ¼ 0:1 since increasing the mean swirl produces modes which are more cut-off (larger values of jkij). With all
modes included, however, transient growth effects are clearly visible indicating that acoustic–rotational
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Fig. 2. Effect of different families of eigenmodes on maximum transient growth of energy (GE) when m ¼ 16, o ¼ 15, s ¼ 0:5, U0 ¼ 0:3.
Solid lines: O ¼ 0:1, dashed lines: O ¼ 0:4. (a) All eigenmodes included, (b) only rotational modes included, (c) only acoustic (cut-off)

modes included.
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interaction is vital for any transient growth effects to occur. The effect of swirl in this case is observed most
over the axial range 0pxp0:25 with lower levels of the mean swirl resulting in larger transient growth levels.
This trend can be explained in terms of the effect of mean swirl on the cut-off modes. The amount of transient
growth observed appears to be related to the rate of decay of the cut-off acoustic modes (the faster the decay
the lower the maximum level of transient growth). This is further supported by the corresponding results when
m ¼ �16 which are shown in Fig. 3. In this case increasing the mean swirl tends to cut-on modes and a single
mode is cut-on when O ¼ 0:4. As a result, the transient growth is higher for O ¼ 0:4 than for O ¼ 0:1 (since the
cut-off acoustic modes decay less rapidly in the former case, while phase interference between the propagating
acoustic mode and the nearly convected modes leads to oscillation in GEðxÞ for O ¼ 0:4). It must be
emphasized that the transient growth is associated with the presence of mean vorticity—if O ¼ 0 then
GEðxÞp1 for all x.

It is also possible to identify which parts of the eigenvalue spectrum contribute most to the energy growth by
considering the structure of the inner product matrix A defined in Eq. (19). This is shown in Fig. 4 when
m ¼ 16. The left branch of the rotational modes occupies the sites j ¼ 1–30, the right branch sites j ¼ 31–60
and the acoustic modes are in sites j ¼ 61–90. The band of non-negligible inner products is widest for
rotational–acoustic interactions (Ajk where ðj; kÞ ¼ (61–90,1–60) and ðj; kÞ ¼ (1–60,61–90)) which supports
the theory that both of these families of modes must be present for any non-modal growth to occur.

Another measure of transient growth effects can be obtained by considering the �-pseudospectra. Normal
operator behaviour can be represented by its eigenvalues spectrum, but for non-normal operators it is more
appropriate to consider the pseudospectrum. The �-pseudospectrum of the matrix A is defined in Schmid and
Henningson [17] as

z 2 C such that kðzI� AÞ�1kEX��1, (28)
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Fig. 3. Effect of different families of eigenmodes on maximum transient growth of energy (GE) when m ¼ �16, o ¼ 15, s ¼ 0:5, U0 ¼ 0:3.
Solid lines: O ¼ 0:1, dashed lines: O ¼ 0:4. (a) All eigenmodes included, (b) only rotational modes included, (c) only acoustic modes

included (all cut-off when O ¼ 0:1 and one cut-on when O ¼ 0:4).
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where I is the identity matrix. The pseudospectrum can be used to obtain a lower bound for the maximum of
the expected transient growth. This is given by the Hille-Yosida Theorem [29,30] and is related to the extent to
which the pseudospectrum protrudes into the unstable (upper) half-plane and is determined as

GEXg2� where g� � sup
�X0

bð�Þ
�

, (29)

with bð�Þ the maximum imaginary part of the �-pseudospectrum in the unstable (upper) half-plane. Fig. 5
shows the �-pseudospectrum calculated for m ¼ 16, O ¼ 0:4 which gives a lower estimate of GE ¼ 1:96 for the
maximum energy growth which is consistent with the result in Fig. 2. The pseudospectrum is important
because it provides an indication of the likely importance of the non-normal behaviour of the system—in
effect the more the pseudospectra protrude into the upper half of the k-plane then the stronger the optimal
growth will be.

The initial conditions which produce the optimal energy growth at specific axial locations are shown for
m ¼ 16 in Fig. 6 and for m ¼ �16 in Fig. 7. In both cases the optimal disturbances have significant three-
dimensionality and tend to be mostly tip-dominated, particularly in the density perturbation. As the optimal
unsteady field evolves downstream the non-modal growth in disturbance energy occurs through increases in
the radial (v0) and azimuthal (w0) velocity components, although the energy gains for m ¼ 16 at the selected
axial location are quite modest. The first few modal coefficients (kj) of each type of mode are found generally
to be the largest, which means that the optimal disturbances possess significant pressure and vorticity.

The results of a parametric study across a range of azimuthal wavenumbers and frequencies are shown in
Fig. 8. At the fixed frequency o ¼ 15 and fixed flow conditions U0 ¼ 0:3;O ¼ 0:4, Fig. 8(a) shows significant
transient growth effects can occur across a wide range of azimuthal wavenumbers. Fig. 8(b) plots the
maximum of GE over the axial range as a function of m and o. Generally the level of growth increases with
frequency and the largest growth (of almost a factor 6) occurs for negative values of m and when cut-on modes
exist for positive values of m.

3.2. Noise norm

The effect of different levels of mean swirl on the results optimized for the noise norm are shown in Fig. 9.
As with the optimal growth of disturbance energy increasing the mean swirl results in lower short-range
growth at m ¼ 16, compared to when m ¼ �16. However, the growth obtained when m ¼ �16 is now much
lower than that when m ¼ 16, a trend which is opposite to that observed for the energy growth. The initial
conditions producing maximum growth of the noise norm at x ¼ 0:125 when m ¼ 16 and at x ¼ 0:25 when
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Fig. 6. Magnitude of components of state vector q for optimal energy growth at x ¼ 0:125 when m ¼ 16. Solid lines: initial conditions

(x ¼ 0), dashed lines: evolved profile at x ¼ 0:125. (a) Axial disturbance velocity ju0j, (b) radial disturbance velocity jv0j, (c) azimuthal

disturbance velocity jw0j, (d) disturbance density jr0j.
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m ¼ �16 are plotted in Fig. 10. As can be seen the velocity components take a very different form from those
which produce optimal energy growth, with maximum velocity amplitude occurring at midspan when m ¼ 16
and much more oscillatory profiles when m ¼ �16. The largest modal coefficients are still the first few of each
mode type when m ¼ 16, but when m ¼ �16 the largest coefficients are in the midrange of each mode type,
which explains the more oscillatory form of the optimal initial disturbance. The growth of the noise norm is
found generally to occur as a result of increases in the azimuthal velocity component. The optimal noise-norm
growth is lower than that for the energy, owing largely to the contribution from the radial velocity in the
energy norm being absent in the noise norm.

A parametric study across azimuthal wavenumber for the noise norm shows that the largest gains are
confined to positive values of m and the growth in the noise norm (at fixed frequency) becomes less as m

becomes more negative. Variation in the maximum of GN with frequency shows similar trends to the energy
growth, in that larger transient growth effects are observed as the frequency increases—see Fig. 11(a). Perhaps
a more natural measure of the noise-norm growth is to consider the values at a fixed axial position
representing the typical stator location in the duct. This is shown in Fig. 11(b) and indicates that there is an
optimal azimuthal wavenumber m for which GN is largest at the stator location. This value of m becomes
larger as the frequency is increased.
3.3. Effect of lining

In practice sound can be attenuated in the duct through the application of acoustic lining on the duct walls.
For an interstage lining with impedance Z1;2 on the inner and outer walls respectively, the finite-impedance



ARTICLE IN PRESS

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

|u
′|

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

|v
′|

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

|w
′|

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

|ρ
′|

r

(a)

(b)

(c)

(d)

Fig. 7. Magnitude of components of state vector q for optimal energy growth at x ¼ 0:25 when m ¼ �16. Solid lines: initial conditions
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boundary conditions become

io
qf
qr
þ R

� �
�

L2r0f
Z1;2

¼ 0 at r ¼ s; 1. (30)

Hard-wall boundary conditions are recovered in the limit Z1;2!1.
This form of lining has the most effect on the acoustic modes, and attenuates modes which are cut-on in the

hard-walled duct. There is no significant effect on the rotational modes, owing to the small pressure associated
with these modes. Acoustic lining is found to be effective only for the attenuation of the energy growth when
cut-on modes exist and when the outer wall is lined (since the cut-on eigenfunctions tend to be tip-dominated)
and even then, as shown in Fig. 12, the lining has no effect on the maximum optimal growth attained but does
reduce the optimal growth as x increases. There is little effect on the growth of the noise norm, since the cut-on
modes do not contribute significantly to the optimal disturbance in this case. The effect of the liner on the
transient growth is negligible when no cut-on modes exist in the hard-walled case, so that if any potentially
damaging growth occurs then this cannot always be controlled by the use of a liner.
4. Summary and conclusions

Optimal disturbances in mean swirling duct flow can be identified whose spatial development leads to
optimal non-modal growth in disturbance energy and in a measure aimed at optimizing upstream-radiated
rotor–stator interaction noise. These optimal disturbances are constructed from eigenmodes which either
propagate or decay downstream, and calculations show that interaction between the acoustic and rotational
modes of swirling duct flow is essential for any transient growth to occur.
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For the mean flow consisting of uniform axial velocity and rigid-body swirl, energy gains of up to six fold
can be sustained over distances which are physically relevant to aeroengine length scales. These energy gains
will not trigger nonlinear effects in the way the non-normal effects may lead to transition in pipe flow, but may
be large enough to impact on the acoustic resonance phenomenon described in Cooper and Peake [4] and
Cooper et al. [5] and other aeroacoustic instabilities. Transient growth effects are also clearly visible in the
noise norm, with up to a three-fold increase being observed for the flow conditions investigated (note that a
three-fold increase corresponds to 4.8 dB on a PWL scale). Importantly, this form of non-modal growth
cannot always be controlled with the use of acoustic wall lining. In the examples presented wall lining is only
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effective in attenuating some of the cut-on (propagating) acoustic modes, which do not necessarily contribute
significantly to the transient growth.

The form of the optimal disturbances depends on the axial location at which optimal growth occurs and
also depends on azimuthal wavenumber. The structure of the optimal disturbances varies between the two
norms investigated but in all cases the optimal disturbances are 3-D. Growth in disturbance energy results
from increases in azimuthal and radial disturbance velocity and growth in the noise norm results from
increases in azimuthal disturbance velocity. In order for the transient growth effects to be physically relevant it
would need to be established whether the disturbance profiles predicted by the optimal theory are physically
realizable. However, it should be noted that turbulent rotor wakes and casing boundary layers will provide a
broadband range of initial conditions, from which the optimal ones may be selected. Of course, if the optimal
part of the forcing is present, but with very much lower amplitude than non-optimal parts, then one would be
forced to say that the amplification due to non-normality may not be important. The point at which the non-
normality becomes important is when the initial conditions actually do contain a significant projection onto
the optimal initial condition. In that sense the present work is a first study, and further investigation is
required into precisely how relevant these optimal initial conditions are, or put another way how close to our
upper bounds a real system would come in practise.

Finally, we repeat that our calculations have been completed for the simplified case of solid-body swirl with
uniform axial flow. This may be a reasonable approximation to the flow in a real aeroengine at mid-span, but
is likely to be less representative close to the outer casing. Since the optimal initial conditions for the energy
norm seen in Fig. 6 tend to be tip dominated, it is clear that further work is required in order to precisely
quantify these effects for a real engine (in contrast, note that the optimal initial conditions for the noise norm
seen in Fig. 10 tend to be mid-span dominated). The simplification provided by the solid-body swirl with
uniform axial flow is that the wavenumber L is independent of r. For a general mean flow, L ¼ LðrÞ, and the
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problem possesses a non-trivial continuous spectrum. Recently, Heaton and Peake [32] have shown that this
continuous spectrum can produce algebraic growth downstream, which is likely to lead to a significant
enhancement of the growth of optimal disturbances. We therefore suggest that the results presented in this
paper for solid-body swirl with uniform axial flow are likely to underestimate the transient growth possible
in a real system, but this point needs a great deal of further investigation. We also note that the effects of
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non-uniform mean entropy on the modal spectrum in swirling flow, excluded in this paper, have been
investigated recently by Cooper [33], and that this is another effect which could well lead to enhanced non-
normal behaviour.
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Appendix A. Numerical calculation of eigenvalues and eigenfunctions

Different numerical techniques are used to solve the eigenvalue problem (7)–(10) for the acoustic and
rotational modes when the mean flow takes the form U ¼ U0, W ¼ Or, where U0 and O are constants.

A.1. Acoustic modes

Initial estimates from the eigenvalues are obtained by solving the eigenvalue problem (12) using the global
Chebyshev collocation technique described by Khorrami [31]. Since a large number of eigenmodes are
required, the higher-order eigenfunctions are not always accurately resolved using this method. The
eigenvalues and eigenfunctions are refined by using the values determined by the collocation technique as
initial guesses in a local integration scheme. Under the assumptions of uniform axial flow and rigid-body
rotation the vortical part of the unsteady velocity can be expressed in the form

X ¼ 0, (31)

R ¼
1

L2 � 4O2

�2OmLf
r

þ 4O2 qf
qr

� �
, (32)

iT ¼
2O

L2 � 4O2

2Omf
r
� L

qf
qr

� �
. (33)

A single equation for f can then be derived

q2f
qr2
þ

1

r
þ

q ln r0
qr

� �
qf
qr
þ

L2 � 4O2

L2

� �
L2

a2
0

� k2

� �
�

m2

r2
�

2Om

rL
q ln r0
qr

� �
f ¼ 0, (34)

which, together with the boundary conditions

qf
qr
�

2Omf
rL
¼ 0 at r ¼ s; 1, (35)

is solved for f using a fourth-order Runge–Kutta integration scheme. The functions R and T can then
be determined from Eqs. (32) and (33). Eq. (34) is fully consistent with the equation solved by Roger and
Arbey [1].

A.2. Rotational modes

Since these modes are sustained by swirl and not compressibility effects they can be determined by solving
the reduced equation introduced by Tam and Auriault [3],

q2f
qr2
þ

1

r

qf
qr
þ

k2
ð4O2 � L2Þ

L2
�

m2

r2

� �
f ¼ 0, (36)

with boundary conditions as given in Eq. (35). The general solution to Eq. (36) is

f ¼ JmðkrÞ þNY mðkrÞ, (37)
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where Jm and Y m are mth-order Bessel functions of the first and second kind respectively, N is an arbitrary
constant and k ¼ kð4O2 � L2Þ

1=2=L. The branch cuts of the square root in k determine that propagating
modes are possible in the range k1okok2 where

k1 ¼
o� ð2þmÞO

U0
; k2 ¼

oþ ð2�mÞO
U0

. (38)

Substitution into the boundary conditions and eliminating N gives the following dispersion relation for the
eigenvalues k

kJ 0mðksÞ �
2mO
Ls

JmðksÞ
� �

kY 0mðkÞ �
2mO
L

Y mðkÞ
� �

� kJ 0mðkÞ �
2mO
L

JmðkÞ
� �

kY 0mðksÞ �
2mO
Ls

Y mðksÞ
� �

¼ 0. ð39Þ

Once the eigenvalues have been obtained the constant N can be determined. The solutions for R and T follow
as for the acoustic modes.

Appendix B. Matrix operators

In Eq. (12), and in the specific case of solid-body swirl with uniform axial flow, the matrices are given by

L ¼

P �
2ðo�mOÞU0r0

a2
0b

2
0

r0
q
qr
þ

1

r

qðrr0Þ
qr

�
mr0

r

0
1

b20
0 0

2mO
r

0 o�mO 2O

2O
q
qr

0 2O o�mO

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

, (40)

K ¼

0 r0 0 0

1 0 0 0

0 0 U0 0

0 0 0 U0

0
BBB@

1
CCCA, (41)

where

P �
1

r

q
qr

rr0
q
qr

� �
þ r0

ðo�mOÞ2

a2
0

�
m2

r2

� �
. (42)

and b20 � 1�U2
0=a2

0.
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